Menü mobile menu

A multi-dimensional view on how neural populations control and adapt movement

Als Kalendereintrag speichern

Abstract:

The analysis of neural dynamics in several brain cortices has consistently uncovered low-dimensional subspaces that capture a significant fraction of neural variability. These “neural manifolds” are spanned by specific patterns of correlated neural activity, the “neural modes.” I will discuss a model for neural control of movement in which the time-dependent activation of these neural modes, rather than the independent modulation of single neurons, is the generator of motor behavior.

I will first focus on the long-standing question of how the same population of neurons in primary motor cortex (M1) can cause a very rich set of movements. Single neuron activity is complex and heterogeneous and varies greatly across different behavioral tasks. Yet, the structure and even the temporal activation dynamics of some neural modes is remarkably well preserved across these different behaviors.

But not only can we perform many different movements, but also adapt them within a few attempts if the circumstances need it. Neural manifolds also provide a framework to understand how the motor cortices adapt movement. Even though it is widely assumed that changes in the cortical output to muscles underlies short-term motor learning, we observed no changes in the firing properties of single neurons that could explain behavioral adaptation. Instead, motor adaptation seems to be mediated by changes in the way upstream dorsal premotor cortex (PMd) recruits M1. We found that PMd exploits a specific region of its neural manifold that does not directly effect on M1, called the “null space,” to enable rapid changes in its ultimate output to M1. Critically, this mechanism can only be revealed through the neural manifold view of neural function.

These results support the view that neural modes, not single neurons, are the basic mechanism upon which cortical processing is built. Given that neural modes are also found in non-motor areas such as prefrontal cortex or visual cortex, similar mechanisms could explain how populations of neurons in different brain areas may flexibly perform different functions and adapt to changing conditions.

Referent/-in

Juan Álvaro Gallego
Spanish National Research Council and Northwestern University

Anfahrtswege zum DPZ

Lageplan des DPZ

E - Haupteingang/Anmeldung
1 - Geschäftsführung; Abteilungen: Infektionsbiologie/-modelle, Versuchstierkunde, Primatengenetik, Verhaltensökologie und Soziobiologie, Kognitive Ethologie, Neurobiologie; Verwaltung; Bibliothek; Stabsstellen: Forschungskoordination, Kommunikation, Informationstechnologie, Betriebstechnik
2 - Materialanlieferung/Einkauf
3 - Forschungsplattform Degenerative Erkrankungen; Forschungsgruppe Soziale Evolution der Primaten
4 - Abteilung Kognitive Neurowissenschaften
5 - Tierhaltung
6 - Bildgebungszentrum; Abteilung Funktionelle Bildgebung


Anreise mit dem PKW

Folgen Sie von der Autobahnausfahrt "Göttingen Nord" der B27 in Richtung Braunlage bis zur dritten Ampelkreuzung. Biegen Sie rechts ab Richtung Kliniken und anschließend links in die Robert-Koch-Straße. Am Ende der Straße fahren Sie rechts in Richtung Nikolausberg auf die Otto-Hahn-Straße. Die erste Straße zu Ihrer Linken ist der Kellnerweg, das Primatenzentrum ist ausgeschildert.


Anreise mit dem Bus

Ihr Fußweg von der Bushaltestelle Kellnerweg zum DPZ-Haupteingang/zur Anmeldung:
Von der Bushaltestelle Kellnerweg (Linie 21/22 und 23) Straße überqueren, in Fahrtrichtung des Busses gehen. Am Briefkasen links in den Fußweg einbiegen und rechts halten. Am Ende des Fußwegs rechts in den Kellnerweg abbiegen. Der Haupteingang des DPZ liegt dann auf der linken Seite.

Datum und Uhrzeit 12.04.18 - 16:15 - 17:30 Anmeldung nicht notwendig

Kontakt Swathi Sheshadri (Doctoral Student)
Deutsches Primatenzentrum GmbH
Neurobiology lab
37077 Göttingen
Tel: +49 551 3851-484
email: SSheshadri@dpz.eu
Zurück zur Übersicht