Effect of light sleep on three-dimensional eye position in static roll and pitch

J.H. Cabungcal a,*, H. Misslisch a, H. Scherberger b, K. Hepp c, B.J.M. Hess a

a Department of Neurology, University Hospital of Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
b Division of Biology, CALTECH, Pasadena, CA, USA
c Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland

Received 29 May 2000; received in revised form 31 July 2000

Abstract

We examined three-dimensional eye positions in alertness and light sleep when monkeys were placed in different roll and pitch body orientations. In alertness, eye positions were confined to a fronto-parallel (Listing’s) plane, torsional variability was small and static roll or pitch induced a torsional shift or vertical rotation of these planes. In light sleep, the planes rotated temporally by about 10°, torsional variability increased by a factor of two and the static otolith-ocular reflexes were reduced by about 70%. These data support the importance of a neural control of the thickness and orientation of Listing’s plane, and suggest that part of the vestibular input underlying otolith-ocular reflexes depend on polysynaptic neural processing. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Eye movement; Ocular torsion; Otolith; Listing’s law; Sleep

1. Introduction

Since Helmholtz (1867) it is known that the brain selects a two-dimensional subgroup from among the range of mechanically possible three-dimensional (3D) eye positions, a finding called Listing’s law. This law states that 3D eye positions are confined to a single plane — when the head is upright and stationary and eye positions are expressed as rotation vectors relative to a common reference position. When primary position is chosen as reference, i.e. when data are represented in Listing’s coordinates, the plane of eye positions is called Listing’s plane (LP). Previous work in alert monkeys and humans has shown that Listing’s law holds during saccades, fixations, smooth pursuit (Tweed & Vilis, 1990; Haslwanter, Straumann, Hess, & Henn, 1992; Tweed, Fetter, Andreadaki, Koenig, & Dichgans, 1992) and, in a generalized sense, during vergence (humans: e.g. Mok, Ro, Cadera, Crawford, & Vilis, 1992; Minken & van Gisbergen, 1994; monkeys: Misslisch & Hess, 1999) but can be violated by the rotational vestibulo-ocular reflex (humans: Misslisch, Tweed, Fetter, Sievering, & Koenig, 1994; monkeys: Angelaki & Hess, 1996; Misslisch & Hess, 2000). A large range of ocular torsion in violation of Listing’s law has also been observed in sleep (Nakayama, 1975; Suzuki, Kase, Kato, & Fukushima, 1997) leading to the proposal that Listing’s law is the consequence of active neural rather than passive mechanical constraints.

Previous studies on static otolith-ocular reflexes have shown that 3D eye positions still lie in Listing’s plane but that this plane is shifted along the torsional axis in roll and tilted around the vertical axis in pitch (Crawford & Vilis, 1991; Haslwanter et al., 1992). With a gain of about 0.10, these ocular counterroll and counterpitch responses, measured in alert monkeys, were relatively low. The effect of light sleep on the orientation of Listing’s plane in small body roll orientations has been determined by Suzuki et al., (1997). They reported that the ocular counterroll observed in alert animals was reduced by about 50% in drowsiness. Controversial results have been reported on the effects of lesioning the vertical-torsional neural integrator in the interstitial nucleus of Cajal (iNC) on ocular counterroll. Whereas
under inhalative anesthesia with a mixture of O₂ – N₂O. Head restraint and a dual search coil were implanted. Using sterile surgical techniques, skull bolts for chronic preparation for 3D eye movement recordings. In light sleep we found a striking decrease of otolith-ocular reflexes, both in roll and pitch, as well as an increase in the range of ocular torsion.

2. Methods

2.1. Preparation of animals

Experiments were performed on four juvenile rhesus monkeys (Macaca mulatta; abbreviated ME, JU, SU, RO) weighing between 3.5 and 4.5 kg. The animals were chronically prepared for 3D eye movement recordings. Using sterile surgical techniques, skull bolts for head restraint and a dual search coil were implanted under inhalative anesthesia with a mixture of O₂ – N₂O and further supplemented with halothane, if required, to maintain a constant level of anesthesia. In one animal, a recording chamber was stereotaxically implanted over a trephine hole for single-neuron recordings in the rMLF and PPRF as previously described (Henn, Baloh, & Hepp, 1984; Suzuki, Büttner-Ennever, Straumann, Hepp, Hess, & Henn, 1995). After surgery, animals were treated with antibiotics and analgesics. All procedures were in accordance with the NIH Guide for the Care and Use of Laboratory Animals, and the Veterinary Office of the Canton of Zürich approved the protocol.

2.2. Measurement, calibration and representation of 3D eye position

3D positions of the right eye were measured with the magnetic field-search coil technique using an eye position meter 3000 (Skalar Instruments, Delft, The Netherlands). Calibration of eye position data was carried out as described in detail by Hess, van Opstal, Straumann, and Hepp (1992). Briefly, in an in-vitro procedure, the magnitude of the two coil sensitivity vectors as well as the angle between them was computed. In an in-vivo procedure, performed before each experiment, the animal repeatedly fixated three light emitting diodes placed either straight ahead, 20° down or 20° up, at a distance of 0.8 m. The voltages measured for these fixations were used together with the in-vitro determined coil parameters to compute offset voltages as well as the orientation of the search coil on the eye.

Eye positions were expressed as rotation vectors (Haustein, 1989) in a right-handed Cartesian coordinate system, determined by three head-fixed orthogonal axes: x-, y- and z-axis pointing forward, leftward and upward. According to the right-hand rule, positive x-, y- and z-components of the rotation vector correspond to clockwise, downward and leftward components of eye position. In the figures, the components of eye positions will be given in degrees.

2.3. Experimental setup and protocol

Animals were seated in a primate chair and secured with chair-fixed shoulder and lap belts. The head was restrained in a 15° nose-down position such that the lateral semicircular canals were approximately earth-horizontal (Böhmer, Henn, & Suzuki, 1985). The primate chair was placed inside the 3D vestibular rotator with three motor-driven axes (Acutronic, Jona, Switzerland). The accuracy of the position control on each axis was < 0.1°. A lightproof sphere of 0.8 m radius surrounded the rotator enabling recordings in complete darkness.

During the experiments, the animals were initially positioned in upright and then rolled or pitched into ten different static positions in steps of ± 20°. Spontaneous eye movements were recorded in each of the ten static roll and ten static pitch positions for the alert and light sleep condition. In alert trials (in the light), the experimenter drew the monkey’s attention to various targets in the visual field to ensure that the animal made eye movements all over its oculomotor range. For comparison, we recorded a few trials in alert animals in darkness while applying auditory stimuli at various locations to induce eye movements over a wide range. When the animal was left for about 5 min in total darkness it fell into a light sleep state, determined by loss of all rapid eye movements as described below. Each eye movement recording consisted of 92 s of saccadic and fixational (alert) or drifting and oscillating (light sleep) eye movements. We usually recorded between 2 and 6 files per animal for each roll and pitch position, both in alertness and in light sleep.
2.4. Characteristics of three-dimensional eye movements in light sleep

When alert monkeys scan their visual environment they normally make three to four rapid eye movements per second to redirect their gaze line on objects of interest. In between these saccades lie periods of steady fixations in which these objects are visually inspected (Fig. 1A, torsional, vertical and horizontal eye position traces labeled ‘Ex’, ‘Ey’, and ‘Ez’, respectively). When alert animals made eye movements in darkness, the periods of steady fixations were prolonged (Fig. 1B). In agreement with previous studies (Henn, Baloh, & Hepp, 1984; Kuhlo & Lehman, 1964), we found that light sleep periods were characterized by the absence of the normal saccade-fixation pattern and the appearance of drifting eye movements and pendular eye oscillations at frequencies between about 0.2 to 0.3 Hz (Fig. 1C and D). To obtain a physiological correlate of the state of alertness, we measured the activity of premotor saccadic burst neurons in the two distinct periods of eye motion observed during alertness and light sleep in one monkey (Henn et al., 1984). More specifically, neurons in the rostral interstitial medial longitudinal fasciculus (riMLF) and the paramedian pontine reticular formation (PPRF) were recorded using tungsten electrodes (impedance 1.5–2 MΩ; Frederick Hare, USA). Activity in the riMLF was associated with the onset of vertical and/or torsional rapid eye movements (short-lead burst neurons), whereas discharges in the PPRF coded for ipsi-horizontal/ipsi-torsional saccades. When we recorded from the alert monkey in the light we obtained a typical pattern of short bursts of activity before and during a saccade in the neuron’s on-direction followed by a silent period during the subsequent steady fixation (Fig. 1A, lower trace). We found a similar pattern in the alert animal in darkness although here the silent periods were prolonged due to extended fixation periods (Fig. 1B, lower trace). The normal discharge pattern alternating between short bursts and longer inactive periods was replaced in light sleep recordings by a continuous high-frequency discharge (between 50–200 Hz), which was presumably due to the lack of inhibition signals from pontine omnipause neurons (see Fig. 1C and D; Henn et al., 1984). Note that the first saccade occurring during the sleep-wake transition brought torsional eye position back to zero, i.e. corrected for the torsional deviations from Listing’s law (Fig. 1C, arrow). In long periods of light sleep, large torsional eye position drifts could be observed (Fig. 1D). As in Fig. 1C and D we usually recorded light sleep data in darkness but in a few cases we recorded data in light and found eye movements with the same characteristics (drifts, oscillations). Occasionally, short periods of stable fixation or saccadic eye movements indicating alertness occurred within longer periods of drifting eye movements. We removed these ‘alert’ periods from the data traces collected in light sleep so that a typical light sleep trial contained between 50 and 70 s of slow eye movement data.

2.5. Data analysis

For analysis of the drifting and slowly oscillating eye movements observed in light sleep, we used an interac-
tive computer program to remove periods where rapid eye movements or steady fixations occurred. That is, the program automatically eliminated periods where the eyes moved with large velocity (above 200°/s: saccades) or remained stable (below 5°/s: fixations) and kept those periods where the eyes moved with low velocity (below 100°/s: drift). As mentioned above, in one monkey we used the firing rate of short-lead burst neurons in the riMLF or PPRF to assist in the evaluation of light sleep periods. For light sleep data, only those eye position recordings extending more than about 15° in vertical and horizontal direction and lasting longer than 40 s were used to determine the orientation of the best-fit plane in various head positions.

We used 3D eye position data collected in alertness (saccades, fixations, smooth pursuit, blinks) and light sleep (slowly drifting and oscillating eye movements) to compute Listing’s plane at the beginning of each experiment. First, by applying linear regression we determined the orientation of Listing’s plane in the alert monkey when placed in an upright position. Second, we transformed the 3D eye position data into Listing’s coordinates. Third, we computed the best-fit plane to eye positions recorded in different static head orientations by describing the torsional component of eye position as a function of vertical and horizontal eye position:

\[E_x = a_0 + a_1 E_y + a_2 E_z \]

where \(E_x \), \(E_y \), and \(E_z \) are torsional, vertical and horizontal components of eye position, \(a_0 \) is the shift of LP along the \(x \)-axis (torsional offset), \(a_1 \) determines the orientation of LP relative to the \(y \)-axis (y-slope: horizontal plane rotation) and \(a_2 \) represents the orientation of LP relative to the \(z \)-axis (z-slope: vertical plane rotation). As a measure of torsional eye position variability we computed the S.D. of the data from the best-fit plane along the \(x \)-axis (‘thickness’ of LP).

3. Results

We found that: (1) gravity-induced changes on 3D eye positions (ocular counterroll and counterpitch) are highly reduced in light sleep, (2) eye positions lie in horizontally rotated planes and (3) the range of torsional eye position was largely increased.

3.1. Characteristics of eye position planes during static roll

When an alert monkey is placed in a static roll position, the plane fitted to the 3D eye positions sampled during saccades and steady fixations are (torsionally) shifted along the \(x \)-axis, as first shown by Crawford and Vilis (1991) and Haslwanter et al. (1992).
placed at 100° left-ear down (counterclockwise; Fig. 2B), the data still lie in a plane (dashed lines in side and top views), but one that is shifted along the abscissa of the side and top view. The shift in the positive torsional direction means that the counterclockwise head orientation induces clockwise torsional eye position components that accompany any combination of horizontal (side view) and/or vertical (top view) eye position. A similar pattern is observed when the monkey is placed in a 100° right-ear down (clockwise) position, but now the shift of Listing’s plane is in the opposite direction inducing constant counterclockwise eye position components. That is, static head roll induces low-gain ocular counterroll.

What happens to the ocular counterroll in periods of light sleep? To examine this point we plotted, in the same views and for the same roll positions as in Fig. 2, examples of 3D eye positions collected during slowly drifting and oscillating eye movements (Fig. 3). From inspecting the plots, three observations can be made:

1. compared to its value obtained in alertness, the shift of the best-fit planes in ear-down positions was considerably reduced;
2. the planes tilted by large amounts horizontally, towards the side of the recorded eye (i.e. temporally), in all roll positions;
3. relative to the alert data, torsional variability increased—in particular for the ear-down positions.

We quantified the shift of the best-fit planes for all static head roll positions and for alertness and light sleep data by linear regression (see Section 2). To assess the statistical reliability of the fit procedure, we applied a bootstrap analysis (Efron & Tibshirani, 1993; Press, Teukolsky, Vetterling, & Flannery, 1992) on a complete data set obtained in one animal. As can be seen in Fig. 4, the mean values for the torsional shift of the best-fit Listing planes in alertness (circles, ± S.D. indicated by vertical bars) and light sleep (squares, ± S.D. indicated by vertical bars) were well reproduced by bootstrap analysis (crosses). More specifically, in each roll position and for each wake state data were collected between two and six times. Then, for each data set, we applied the bootstrap analysis, yielding the mean torsional shift from 100 synthetic data sets obtained by drawing random samples with replacement from the experimentally measured values (see e.g. Press et al., 1992). The crosses in Fig. 4 denote the overall average

![Fig. 3. The roll-dependent torsional shift of the best-fit eye position plane was considerably reduced in light sleep. (A) Tips of 3D eye position vectors collected during slow drifts and oscillations in upright body orientation (gray data) showed a large increase in the range of torsional eye positions (side and top view) indicating a violation of Listing’s law. (B, C) The best-fit planes showed only a small torsional offset (1.5° CW/1.1° CCW) opposite to the direction of body tilt (100° CCW/100° CW). Independent of body roll, the best-fit planes were considerably rotated (around the z-axis) to the right by —6.8, —13.5 and —11.9° (A–C). The width of the best-fit eye position planes was 1.3, 1.8 and 1.7°, respectively (A–C). Data consisted of 60, 69 and 60 s of slow drifts and oscillations (A–C). Same format and views as in Fig. 2. Monkey ME.

![Fig. 4. Example of ocular counterroll during static head roll. The shift of the planes fitted to the 3D eye position data in alertness (circles) was markedly reduced in light sleep (squares), averaged over all roll orientations by 70.0%. Values are means of repeated measurements, the vertical bars (alert/sleep) denote ± S.D. The mean values derived from 100 repeated fits performed by bootstrap analysis (crosses) were very close to the data derived from the best-fit planes confirming the robustness of the fit procedure. Monkey SU.](image-url)
of the bootstrap values for a given roll position. The standard deviations from the bootstrap mean were negligible (in Fig. 4, they were invariably smaller than the vertical extension of the crosses), demonstrating that the fit procedure was robust.

Fig. 4 demonstrates that the torsional shift of LP is clearly modulated by static head roll when the animal is alert (maximum torsional shift about 8° when the head is tilted −100°, i.e. counterclockwise) and that this modulation is considerably diminished in light sleep (by 70% when averaged over all roll positions). This pattern was observed in all four animals as summarized in Fig. 5 that compares the mean torsional shift of the best-fit eye position plane (averaged over all trials in all animals) for all roll positions in alertness (circles) and light sleep (squares). As in Fig. 4, vertical bars for both alert and light sleep indicate the standard deviation from the means. The torsional shift of the best-fit planes in light sleep was more variable and significantly lower than the corresponding alert values (student t-test, \(P < 0.05 \); filled symbols) except at upright body orientation where both conditions yielded close to zero values. Averaged over all roll positions ocular counterroll observed in alertness was reduced by 66.5% in light sleep (range 50.0 to 96.1%).

As mentioned above, another consistent result, found in all (128) trials of all four animals, was the large horizontal rotation of the fitted planes. Fig. 6 illustrates that the average (all trials at a given static roll position, all animals) horizontal rotation of the best-fit planes differed considerably for data obtained in alertness (circles, ± S.D.) or in light sleep (squares, ± S.D.). Except for the −60° roll position we did not observe a significant horizontal rotation for the alert data (t-test, \(P < 0.05 \)). On the other hand, we did find large mean tilt angles ranging from −8.6° to −17.6° for the light sleep data. The negative sign indicates that the planes computed for the data recorded for the right eye invariably rotated to the right, i.e. the planes rotated temporarily. The amount of temporal plane rotation did not depend on head roll (one-way ANOVA, \(F(10,118) = 3.64, P < 0.0003 \)).

A third observation, clearly visible in the example of Fig. 3 (side and top views), was that the range of ocular torsion, i.e. the ‘thickness’ of the best-fit plane depended on the body’s roll orientation in alertness, increasing with increasing roll angles (t-test, \(P < 0.05 \)). During light sleep, it increased even further in most static roll positions (Fig. 7, light sleep data: squares; alert data: circles). For example, in the upright position the standard deviation from the best-fit planes was 0.7° averaged over all experiments in alertness (S.D. ± 0.1, \(n = 16 \)) and 1.5° in light sleep (S.D. ± 0.8, \(n = 19 \)). The large increase of torsional variability and the large temporal rotations of the best-fit planes represent a clear violation of Listing’s law in light sleep.

Fig. 5. Quantitative analysis of ocular counterroll in alertness and light sleep. The torsional shift of the planes fitted to 3D eye positions was considerably reduced in light sleep (squares) compared to alertness (circles). Values are means over all experiments in all four animals.

Fig. 6. Large horizontal rotation of best-fit eye position planes during static head roll in light sleep. Horizontal tilt angles were close to zero for saccade and fixation data obtained in alertness (circles) but prominent in light sleep (squares) for all roll orientations (mean: −11.3°, range: −8.6°−17.6°). Negative values indicate that the planes rotated rightward. Data that were significantly different (t-test, \(P < 0.05 \)) during alertness and light sleep are represented by filled symbols.
3.2. Characteristics of eye position planes during static pitch

When an alert monkey is placed in a static pitch position, the plane fitted to the 3D eye positions is vertically rotated around the y-axis (Fig. 8), as described earlier by Crawford and Vilis (1991) and Haslwanter et al. (1992). The figure shows, in the same format as in Fig. 2, eye position data collected in an alert animal in different body orientations (see cartoon heads). In the upright position (A) the rotation vectors show a planar organization and are confined to an almost fronto-parallel plane (dashed lines in side and top view). This plane is tilted somewhat down in nose-up pitch (B, side view) and up in nose-down pitch (C, side view) indicating that Listing’s plane tilts opposite to the head tilt albeit with low gain. In other words, ocular counterpitch is insignificant in sleep.

The vertical orientation of the planes fitted to the slow drifting eye movements in light sleep did not depend on head pitch. In Fig. 9, the best-fit plane was rotated slightly upward (away from the Ez-axis) when the animal was in an upright body orientation (side view, top panel), but was approximately aligned with the z-axis in 100° nose-up/nose-down orientations (side view, middle/bottom panels). In other words, body pitch did not systematically influence the vertical orientation of the best-fit plane. And as in the roll case, the best-fit planes in all pitch orientations were rotated horizontally (top view), and torsional variability was largely increased (side view).

Fig. 10 summarizes the mean vertical rotation of the best-fit planes (averages over all trials and all monkeys) for data obtained in alertness (circles, vertical bars are ± S.D.) and light sleep (squares, bars denote ± S.D.). While alert, the vertical rotation of the fitted planes is a function of head pitch that peaks at ± 80°–100° static pitch orientation. In light sleep, the vertical orientation of the best-fit planes is no longer modulated by body pitch but shows a mean offset of −2.8°, i.e. the planes are rotated slightly upward. Corrected for the offset, the modulation observed during alertness was reduced on average by 74.5%.

The horizontal orientations of the best-fit planes obtained in alertness were very unlike those obtained in light sleep. Fig. 11 plots the average (all trials, all animals) horizontal rotation for data obtained in alertness (circles, vertical bars indicate ± S.D.) and light sleep (squares, bars denote ± S.D.) data. The angles of horizontal plane rotation computed for the alert data were very small and, except for the 40 and 60° (nose-up pitch) orientations, were not modulated by body pitch.
Fig. 9. The pitch-dependent vertical tilt of the best-fit plane was greatly reduced in light sleep. (A) 3D eye position vectors during slow drifts in upright body position (gray data points) lay in a plane that was almost parallel to the z-axis (tilted by −0.7° up). (B, C) The eye position planes did not systematically tilt during −100° nose-up (plane tilt of −2.0°, in non-compensatory direction) and 100° nose-down (plane tilt of −1.2°) pitch. In all examples, the best-fit planes showed large horizontal tilts (~9.4, −9.0 and −13.5° in A–C) and a large scatter of ocular torsion (plane width of 1.6, 1.1 and 1.1° in A–C) suggesting a clear deviation from Listing’s law. Same format and views as in Figs. 2, 3 and 8. Monkey ME.

Fig. 10. Quantitative analysis of ocular counterpitch in alertness and light sleep. Compared to their value in alertness (circles), the vertical tilt of the best-fit planes was greatly reduced in light sleep (squares) and showed a negative offset (i.e. the planes were usually rotated upward from the positive z-axis). Values are means over all trials in all animals.

Fig. 11. Large horizontal rotation of best-fit plane position planes during static head pitch in light sleep. As in roll (Fig. 6), data collected in the alert monkey (circles) showed almost zero horizontal rotation angles. Large negative values were observed in light sleep (circles) and in all pitch orientations (mean: −10.5°, range: −9.0–−13.5°).

4. Discussion

We examined the effects of the state of alertness on 3D eye positions in static roll and pitch body orientations. In light sleep, we found a large reduction of ocular counterroll and counterpitch, large temporal rotations of the eye position planes, and a large increase of the range of ocular torsion.
4.1. Changes in the geometric constraints on 3D eye positions in alertness and light sleep

In the alert monkey, 3D saccadic and fixational eye positions (expressed as rotation vectors) were confined to a fronto-parallel (Listing’s) plane. The torsional deviation from that plane was small (< 0.9°) and agreed with earlier studies (Tweed & Vilis, 1990; Haslwanter et al., 1992). In light sleep, the normal saccade-fixation pattern was replaced by slow drifts and pendular eye oscillations. As a consequence, 3D eye positions deviated more from the best-fit plane as indicated by a large increase of torsional variability (Figs. 3, 7, 9 and 12). An even more serious deviation from Listing’s law was the large horizontal rotation of the eye position planes observed in all light sleep trials, independent of the body’s orientation with respect to gravity. Thus, 3D positions of the right eye lay only roughly in a plane and this plane was rotated to the right, away from alignment with the y-axis (Figs. 3, 6, 9 and 11). This temporal rotation means that in general downward/upward eye positions are associated with clockwise/counterclockwise torsion. A similar pattern (binocular extension of Listing’s law, L2) has been described to hold for both eyes during vergence eye movements, with a close relation between temporal plane rotation and the vergence angle (e.g. Mok, et al., 1992; Minken & van Gisbergen, 1994; Bruno & van den Berg, 1997; Tweed 1997). Preliminary results from an ongoing study on the geometry of binocular eye positions in light sleep indicate the absence of such a systematic relationship, i.e. the temporal rotation of the two eye position planes is not a precise function of vergence angle as predicted by L2 (Cabungcal, Misslisch, Scherberger, Hepp, & Hess, 2000).

An extended range of ocular torsion by a factor of two has been mentioned by Suzuki et al. (1997), in the drowsy monkey, but they did not report quantitative data. After uni- and bilateral lesions of the torsional velocity-to-position integrator in the interstitial nucleus of Cajal (iNC), Helmchen et al. (1998) found that the width of Listing’s plane raised from 1.4° to 2.2°, an increase of 63%. Likewise, Crawford, Cadera and Vilis (1991) reported that microstimulation or unilateral lesion of the iNC produced eye movements out of Listing’s plane. We found that the appearance of drifting and oscillating eye movements in light sleep was accompanied by characteristic changes in the discharge of brainstem burst neurons involved in saccade generation (riMLF neuron in Fig. 1). This confirms previous studies that reported premotor burst neurons that lost their distinct burst pattern and showed continuous low-frequency firing in sleep (Henn et al., 1984; Raybourn & Keller, 1977). It is also known that omnipause neurons, constantly active except during saccadic periods in alertness, became entirely inactive in light sleep (Henn et al., 1984). Thus, the ongoing activity in the burst neurons most likely reflects the lack of systematic inhibition by the omnipause neurons that is normally observed in awake monkeys. In alertness, microstimulation or unilateral lesions of the torsional-vertical short-lead burst neurons in the riMLF induce eye movements out of Listing’s plane (Henn, Straumann, Hess, Hepp, Vilis, & Reisine, 1991; Crawford & Vilis, 1992; Suzuki, Straumann, Hess, & Henn, 1994; Suzuki et al., 1995).

Small torsional deviations from Listing’s plane are normally corrected by saccades that bring the eye position back into Listing’s plane. Of course, this correction mechanism that has been found to involve the nucleus reticularis tegmenti pontis (van Opstal, Hepp, Suzuki, & Henn, 1996) was non-functional in light sleep: per definition, this period is characterized by slowly drifting, oscillating eye movements and by the absence of (torsion-correcting) saccades. Thus, we regularly found ocular torsion to adopt large values that were zeroed by the first saccade occurring in the sleep-wake transition (see Fig. 1C). Additional support for the idea of a cerebellar involvement in the maintenance of Listing’s law has been reported by Straumann, Zee, & Solomon (2000) who found significant torsional eye position drifts in patients with cerebellar atrophy. Taken together, these findings suggest the importance of neural control mechanisms in the brainstem and cerebellum, which generate accurate rapid eye movements and steady fixations in the alert monkey and break down in light sleep.
resulting in deviations from close adherence to Listing’s law. Of course, this does not mean that there are no mechanical factors in eye control. It is clear, however, that mechanical factors alone cannot explain our observed deviations from Listing’s law: because passive plant mechanics would not change their effect on ocular kinematics when a subject’s mental state changes from alertness to light sleep, the range of ocular torsion should be equal in alertness and in sleep, and there should be no temporal rotation of the eye position planes during light sleep. A combination of the two factors, plant mechanics and neural commands, has been suggested as an explanation of Listing’s law, with muscle pulleys and related tissue defining Listing’s plane and motor commands conforming to this setting (Demer et al., 1995; Miller & Demer, 1997). In the wake-sleep transition, then, either the stiffness in the extraocular rectus pulleys could be changed by smooth muscle innervations (Demer, Poukens, Miller, & Miveych, 1997), or the anterior-posterior location of the muscle pulleys could be changed by orbital layer rectus muscle fibers (Demer, Oh, & Poukens, 2000), resulting in an increase of torsional eye position variability. Note that both these possibilities would not work without neural control mechanisms. Thus, while no one argues against the need for neural commands, the exact role of plant mechanics in the implementation of Listing’s law remains unclear. The finding of even another layer of extraocular muscle fibers (marginal zone, Wasicky, Ziya-Ghazvini, Blumer, Lukas, & Mayr, 2000), whose functional significance is not yet understood, indicates that more work is needed to determine the mechanical properties of the oculomotor plant.

4.2. Ocular counterroll and counterpitch in alertness and light sleep

We found that static otolith-ocular reflexes modified the orientation of Listing’s plane for saccades and fixations as reported previously (Hashwanter et al., 1992): a torsional shift during roll and a vertical rotation during pitch (Figs. 2, 4, 5, 8 and 10). In light sleep, the amount of torsional shift and vertical rotation of the cloud of 3D eye positions was clearly reduced (Figs. 3–5, 9 and 10). A dysfunctional neural integrator has been suggested as a possible cause of reduced ocular counterroll by Crawford & Vilis (1999). After lesions of the torsional velocity-to-position integrator located in the iNC, they found that ocular counterroll was entirely abolished after postaccadic eye position drift had settled and concluded that ocular counterroll is produced by phasic otolith signals sent to the neural integrator (iNC). In contrast, Helmchen et al. (1998) (monkey) and Anderson (1981) (cat) found normal ocular counterroll after iNC lesions. Helmchen et al. (1998) suggested that the iNC is not involved in the generation of conjugate torsional eye positions during head roll. Rather, direct projections from vestibular nuclei neurons to the oculomotor nuclei through the MLF are believed to mediate this static otolith-ocular reflex (McCrea, Strassmann, & Highstein, 1987; Markham, 1989; Iwamoto, Kitama, & Yoshida, 1990). Our data, with counterroll and counterpitch responses reduced by about 70% in light sleep, cannot distinguish between these two alternatives. However, some information from the otoliths must reach the oculomotor nuclei to modify torsional eye position during roll and pitch even in light sleep. The relatively large variability in the obtained counterroll and counterpitch responses may indicate that otolith signals that bypass the velocity-to-position integrator and project directly to the oculomotor muscles are rather weak.

5. Conclusions

Compared to the alert animal, the modulation of 3D eye positions by roll and pitch was reduced by about 70% in light sleep. Furthermore, the best-fit planes rotated by about 10° temporally, and the range of ocular torsion increased by about 100%. These data suggest that normal static counterroll and counterpitch, as well as a close adherence to Listing’s law, require coordinated and precise neural control mechanisms in the brainstem and cerebellum.

Acknowledgements

This work was supported by the Betty and David Koetser Foundation for Brain Research and a Swiss National Science Foundation grant to B.J.M.H. # 31-47287.96. We thank Bernadette Disler and Albert Züger who provided us excellent technical assistance and Drs Max Dürsteler and Daniel Forney for their excellent computer support.

References

