Einfluss von Insekten- (*Hermetia illucens*) und Mikroalgenmehl (*Spirulina platensis*) als alternative Proteinquellen auf Wachstumsparameter und Schleimhautoberfläche des Dünndarms von Absatzferkeln

S. Velten¹, C. Neumann¹, J. Mast¹, E. Gruber-Dujardin² und F. Liebert¹

¹Georg-August-Universität Göttingen, Tierernährungsphysiologie, Lehrstuhl für Tierernährung, Kellnerweg 6, 37077 Göttingen, ²Deutsches Prinzenzentrum GmbH, Abteilung Infektionspathologie, Kellnerweg 4, 37077 Göttingen

Einleitung

Material und Methoden

<table>
<thead>
<tr>
<th>Komponenten</th>
<th>Kontrolle</th>
<th>[HM]</th>
<th>[HM+AS]</th>
<th>[SM]</th>
<th>[SM+AS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weizen</td>
<td>325,5</td>
<td>331,8</td>
<td>331</td>
<td>346,8</td>
<td>346,5</td>
</tr>
<tr>
<td>Gerste</td>
<td>325,5</td>
<td>331,8</td>
<td>331</td>
<td>346,8</td>
<td>346,5</td>
</tr>
<tr>
<td>Sojaextraktionschrot</td>
<td>280</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>Hermetia-Mehl</td>
<td>-</td>
<td>104,4</td>
<td>104,4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Spirulina-Mehl</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>84,9</td>
<td>84,9</td>
</tr>
<tr>
<td>Sojaöl</td>
<td>30</td>
<td>55</td>
<td>53</td>
<td>45</td>
<td>42</td>
</tr>
<tr>
<td>Prämix⁴</td>
<td>33</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Lysin</td>
<td>4,4</td>
<td>4,4</td>
<td>6,2</td>
<td>4,4</td>
<td>7</td>
</tr>
<tr>
<td>Methionin</td>
<td>0,5</td>
<td>0,5</td>
<td>1,4</td>
<td>0,5</td>
<td>0,9</td>
</tr>
<tr>
<td>Threonin</td>
<td>1,1</td>
<td>1,1</td>
<td>2</td>
<td>0,6</td>
<td>1,3</td>
</tr>
<tr>
<td>ME (MJ/kg)</td>
<td>13,4</td>
<td>14,4</td>
<td>14,3</td>
<td>14,0</td>
<td>13,9</td>
</tr>
<tr>
<td>Rohprotein</td>
<td>191,4</td>
<td>192,5</td>
<td>195,2</td>
<td>183,4</td>
<td>186,5</td>
</tr>
</tbody>
</table>

¹Menge und Spurenelemente, Vitamine, Makro- und Mikroelemente (THQ)

Die zootechnischen Parameter (Wachstum, Futteraufnahme, Futter- und Proteinverwertung) wurden wöchentlich erhoben. Die statistische Auswertung erfolgte mittels einfaktorieller ANOVA (Paket IBM SPSS Statistics 25).

Am Versuchsende wurden jeweils 4 Tiere der Kontrolle sowie der HM- und SM-Gruppe euthanasiert. Aus den Blinddärmen entnommene Chymusproben wurden unverzüglich auf Bakterienwachstum (Gesamkeimzahl, Entercoccus, Enterobacteriaceae, E. coli, Coliforme Bakterien, Milchsäurebakterien, Clostridium, Salmonellen und Campylobacter) sowie Parasiten untersucht.

Darüber hinaus wurden in Anlehnung an Makanya et al. (1995) systematisch zufällig einheitlich ausgewählte (systematic uniform random sampling, SURS) Gewebeproben des Dünnarms zur stereologischen Bestimmung der primären Schleimhautoberfläche (Spm) gewonnen. Dazu wurde der Darm in drei Abschnitte (Duodenum, Jejunum und Ileum) eingeteilt und jeweils in Länge und Breite vermessen. Die statistische Auswertung erfolgte mit der Software GraphPad PRISM Version 6.05. Die Signifikanz wurde mittels ANOVA unter Zuhilfenahme des Kruskall-Wallis-Tests bestimmt.

Ergebnisse und Diskussion

Tabelle 2: Zootechnische Daten nach 25 Tagen Fütterungsversuch (Mittelwerte ± Standardabweichung)

<table>
<thead>
<tr>
<th>Kontrolle</th>
<th>[HM]</th>
<th>[HM+AS]</th>
<th>[SM]</th>
<th>[SM+AS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=8</td>
<td>n=8</td>
<td>n=7</td>
<td>n=8</td>
<td>n=8</td>
</tr>
<tr>
<td>LM* Versuchsstart (kg)</td>
<td>8,8 ± 0,7</td>
<td>8,7 ± 1,1</td>
<td>9,2 ± 1,2</td>
<td>9,0 ± 0,9</td>
</tr>
<tr>
<td>LM* Versuchsende (kg)</td>
<td>21,9 ± 1,5</td>
<td>19,7 ± 2,0</td>
<td>21,9 ± 1,9</td>
<td>19,3 ± 2,2</td>
</tr>
<tr>
<td>Futtermverzehr (g/d)</td>
<td>732,6 ± 49,6</td>
<td>646,1 ± 85,1</td>
<td>704,4 ± 36,8</td>
<td>653,3 ± 74,0</td>
</tr>
<tr>
<td>LMZ** (g/d)</td>
<td>521,0 ± 36,1</td>
<td>439,0 ± 54,3</td>
<td>508,6 ± 32,0</td>
<td>411,0 ± 59,9</td>
</tr>
<tr>
<td>Futtermverzehr (g/d)</td>
<td>1,41± ± 0,1</td>
<td>1,47± ± 0,1</td>
<td>1,39± ± 0,1</td>
<td>1,60± ± 0,1</td>
</tr>
<tr>
<td>Proteinverzehr (g/d)</td>
<td>0,31 ± 0,02</td>
<td>0,32 ± 0,02</td>
<td>0,30 ± 0,01</td>
<td>0,33 ± 0,03</td>
</tr>
</tbody>
</table>

*Lebendmasse, **Lebendmassezuwachs, ***kommontenzen signifikante Unterschiede zwischen den Fütterungsgruppen (p<0,05)

Die mikrobiologischen Untersuchungen (Bakterien, Parasiten) ergaben keine relevanten Hinweise auf mögliche diätabhängig Veränderungen zwischen den Gruppen.

Um herauszufinden, ob die Fütterung der alternativen Proteinquellen Hermitia illucens und Spirulina platensis Veränderungen der Dünndarmmorphologie bewirkt, wurde bei ausgewählten Tieren (Kontrolle, HM, SM) die Schleimhautoberfläche stereologisch bestimmt. Die auf die Lebendmasse bezogenen Ergebnisse (Spm/m²) sind für die einzelnen Dünndarmschnitte sowie für den gesamten Dünndarm in Tabelle 3 dargestellt. Es zeigten sich insgesamt keine signifikanten Unterschiede zwischen den Fütterungsgruppen. Numerisch wiesen jedoch die Tiere nach Algenfütterung im Vergleich zu den anderen

In: A. Zeyner, H. Kluth, M. Buiang, M. Bochnia und M. Bachmann (Hrsg.)
Institut für Agrar- und Ernährungswissenschaften, Universität Halle-Wittenberg. ISBN: 978-3-86829-891-8
Gruppen eine deutlich größere relative Schleimhautoberfläche von Duodenum, Jejunum und Dünndarm insgesamt auf. Da das Längenwachstum des Darmes u. a. durch die enterale Enzymaktivität beeinflusst werden kann (Ahlfinger, 2016), war die Nährstoffabsorption bzw. die Enzymaktivität der Darm-Schleimhaut durch Inhaltsstoffe von Spirulinamehl möglicherweise herabgesetzt. Kompensatorisch wäre eine größere Oberfläche nötig, um die erforderliche Nährstoffabsorption zu gewährleisten. Der vergleichsweise hohe FA in dieser Gruppe würde eine solche Hypothese grundsätzlich stützen, allerdings wären zu deren Erhängtung umfangreichere Studien erforderlich. Nach Hermetia-Fütterung war dagegen die relative Schleimhautoberfläche im Duodenum durchschnittlich am kleinsten, was für eine effizientere Nährstoffaufnahme im diesem Dünndarmabschnitt sprechen könnte. Allerdings bestehen damit gegenwärtig nur Interpretationsansätze.

Tabelle 3: Mittlere Lebendmasse am Schlachttag sowie die relative primäre Schleimhautoberfläche des gesamten Dünndarms und der drei Darmabschnitte (Mittelwerte ± Standardabweichung)

<table>
<thead>
<tr>
<th></th>
<th>Kontrolle n=4</th>
<th>[HM] n=4</th>
<th>[SM] n=4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lebendmasse (kg)</td>
<td>24.8 ± 2.2</td>
<td>20.7 ± 2.4</td>
<td>21.6 ± 2.1</td>
</tr>
<tr>
<td>$S_{\text{rel, kg}}$ (cm2/kgLM) gesamt Dünndarm</td>
<td>228.5 ± 26.4</td>
<td>224.5 ± 14.3</td>
<td>273.1 ± 42.7</td>
</tr>
<tr>
<td>$S_{\text{rel, kg}}$ (cm2/kgLM) Duodenum</td>
<td>7.1 ± 0.4</td>
<td>5.2 ± 1.7</td>
<td>8.7 ± 2.7</td>
</tr>
<tr>
<td>$S_{\text{rel, kg}}$ (cm2/kgLM) Jejunum</td>
<td>218.2 ± 25.8</td>
<td>215.7 ± 15.4</td>
<td>261.0 ± 39.7</td>
</tr>
<tr>
<td>$S_{\text{rel, kg}}$ (cm2/kgLM) Ileum</td>
<td>3.2 ± 1.1</td>
<td>3.6 ± 0.9</td>
<td>3.5 ± 0.6</td>
</tr>
</tbody>
</table>

*relative primäre Schleimhautoberfläche = Länge [cm] (Darmabschnitt) x Breite [cm] (Untersegment), bezogen auf die Lebendmasse

Schlussfolgerung

Literatur

