Menu mobile menu

PhD thesis:

Rodriguez Polo, I. (2019): Non-human primate iPS cells for cell replacement therapies and human cardiovascular disease modelling.

Wolff, E. (2018): Embryonic and foetal germ cell development in the marmoset monkey: comparative in situ and cell culture studies.

Lewerich, L. D. (2015): Ist DEAD box-protein 4 (DDX4) ein spezifischer Keimzellmarker? Expressionsanalyse im Weißbüschelaffen (Callithrix jacchus).

Kahland, T. (2015):Modifying the common marmoset monkey (Callithrix jacchus) genome: transgenesis and targeted gene modification in vivo and in vitro.

Warthemann, R. (2015): Induced pluripotent stem cells in a marmoset model for parkinson's disease.

Fereydouni, B. (2014): In situ and in vitro analysis of germ and stem cell marker-positive cells in the postnatal ovary of the common marmoset monkey (Callithrix jacchus).

Aeckerle, N. (2014): Pluripotent cells in common marmoset monkey testis.

Eildermann, K. (2012): Potentially pluripotent cells in the common marmoset monkey (Callithrix jacchus) testis.


Kahland, T. S. (2011): Establishing methods for reprogramming differentiated cells from the common marmoset monkey (Callithrix jacchus) using modified mRNA.

Reinisch, I. (2009): Versuche zur in vitro Differenzierung von embryonalen Stammzellen der Linie cjes001 des Weißbüschelaffen (Callithrix jacchus) in Derivate der embryonalen Keimblätter.

Dralle, S. (2009): Analyse der Expression des Keimzellmarkers VASA im neugeborenen und adulten Weißbüschelaffen (Callithrix jacchus) mittels Immunhistochemie und RT-PCR.

Eildermann, K. (2008): Lokalisation, Isolation und Charakterisierung von testikulären Stammzellen im Hoden von Callithrix jacchus.

Hupfeld, T. (2008): Expression und Charakterisierung des follikelstimulierenden Hormons und FSH-Rezeptors vom Weißbüschelaffen (Callithrix jacchus) in vitro.

Chaudhary, K. (2008):  Klonierung von Pluripotenz-Faktoren des Weißbüschelaffens.

Master theses:

Tereshchenko, Y. (2020): Effect of hormonal treatments on the maturation of induced pluripotent stem cell - derived cardiomyocytes.

Mroß, A. (2019): Marmoset iPS cells as proving ground for CRISPR/Cas vectors inducing Titin mutations.

Ksionsko, N. (2018): Cancer/Testis Antigen PASD1: Expression analysis and initial functional Characterization in non-human primate cells.

Urrutia Cabrera, D. (2018): Deletion of symmetric exons of cardiac genes as a novel approach to gene therapy: proof of concept studies in primate iPSC-derived cardiomyocytes.

Knorr, D. Y. (2018): Enhancing the maturation of human and non-human primate iPS cell-derived cardiomyocytes by hormones and increased calcium levels.

Haas, W. (2017): Developing an efficient differentiation protocol for non-human primate induced pluripotent stem cells into cardiomyocytes.

Grant, S. (2015): Transfection of common marmoset monkey (Callithrix jacchus) pluripotent stem cells.

Koziol, A. (2015): Targeted gene modification of the α-synuclein gene in Callithrix jacchus fibroblasts using the CRISPR/Cas9 system.

Huettner, K. (2013): piggyback mediated expression of neuronal transcription factors in common marmoset monkey (Callithrix jacchus) fibroblasts: sufficient to induce a transdifferentiation into neurons?

Speckmann, T. (2012): Transdifferentiation of fibroblasts into neurons by defined factors: establishing methods in Callithrix jacchus.

Griesbach, J. (2012): Establishing methods for the detection of specific mRNAs in living cells using molecular beacons.

Testa, T. (2012): Spermatogonial characterization in the common marmoset monkey (Callithrix jacchus) and the mouse: immunohistochemical and cell culture studies.

Brauns, A. K. (2011): Directed Differentiation of Somatic Stem Cells into Germ Cells.

Hartung, K. (2011): Functional Analysis of LIN28 Nucleolar – Targeting in Mammalian Cells.

Bachelor theses:

Boese, A. (2019): Exon deletion from the otoferlin gene in common marmoset monkey cells using CRISPR-Cas9.

Marks, A. V. M. (2019): The effect of CRISPR/Cas9 - mediated deletion of SMAD3 and CDC42/PAR6 during marmoset monkey fibroblast reprogramming.

Schorle, H. R. (2018): Characterization of NANOS3 expression in marmoset monkey pluripotent stem and germ cells.

Schubert, H. (2018): Differentiation of embryonic stem cells of two non-human primates: comparative cell culture studies.

Nielsen, M. (2017): Ist die Ubiquitin-Protein-Ligase CBL ein Stammzellmarker?

Becker, A. (2016): The effects of microRNAs on the efficiency of iPS cell generation and the influence of the age of the donor on the proliferation of primary Rhesus monkey fibroblasts.

Cors, M. (2015): Impact of the culture conditions of common marmoset monkey (Callithrix jacchus) pluripotent stem cells on the expression of selected pluripotency and differentiation markers.

Caniceiro Valada, P.M. (2015): Immunhistochemical analysis of the spatial relation of primordial germ cells (PGCs) to peripheral nerves in the mouse embryo: are nerves a possible guiding structure for PGCs?

Suplicki, M.M. (2015): Immunohistochemical analysis of the spatial relation of primordial germ cells to peripheral nerves in the marmoset monkey embryo: are nerves a possible guiding structure for PGCs?

Rodriguez Cabrera, L.A. (2013): Austausch von c-MYC gegen den maternalen Transkriptionsfaktor GLIS1 bei der Reprogrammierung von Fibroblasten des Weißbueschelaffen (Callithrix jacchus): initiale Analyse des Effektes auf die Bildung primärer Zellkolonien.

Saldana Morales, V. (2010): Construction of a germ line reporter vector for the common marmoset monkey.