Menü mobile menu

Publikationen

Göttingen

Plegge T, Spiegel M, Krüger N, Nehlmeier I, Winkler M, González Hernández M, Pöhlmann S. Inhibitors of signal peptide peptidase and subtilisin/kexin-isozyme 1 inhibit Ebola virus glycoprotein-driven cell entry by interfering with activity and cellular localization of endosomal cathepsins.PLoS One. 2019 Apr 11;14(4):e0214968. doi: 10.1371/journal.pone.0214968. eCollection 2019.

Reinke LM, Spiegel M, Plegge T, Hartleib A, Nehlmeier I, Gierer S, Hoffmann M, Hofmann-Winkler H, Winkler M, Pöhlmann S. Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2. PLoS One. 2017 Jun 21;12(6):e0179177. doi: 10.1371/journal.pone.0179177. eCollection 2017.

Plegge T, Hofmann-Winkler H, Spiegel M, Pöhlmann S. Evidence that Processing of the Severe Fever with Thrombocytopenia Syndrome Virus Gn/Gc Polyprotein Is Critical for Viral Infectivity and Requires an Internal Gc Signal Peptide. PLoS One. 2016 Nov 17;11(11):e0166013. doi: 10.1371/journal.pone.0166013. eCollection 2016.

Spiegel M, Plegge T, Pöhlmann S. The Role of Phlebovirus Glycoproteins in Viral Entry, Assembly and Release. Viruses. 2016 Jul 21;8(7):202. doi: 10.3390/v8070202.

Hoffmann M, Zhang L, Krüger N, Graichen L, Kleine-Weber H, Hofmann-Winkler H, Kempf A, Nessler S, Riggert J, Winkler MS, Schulz S, Jäck HM, Pöhlmann S. SARS-CoV-2 mutations acquired in mink reduce antibody-mediated neutralization. Cell Rep. 2021 Apr 20;35(3):109017. doi: 10.1016/j.celrep.2021.109017.

Dahlmann F.; Biedenkopf N.; Babler A.; Jahnen-Dechent W.; Karsten CB.; Gnirß K.; Schneider H.; Wrensch F.; O'Callaghan CA.; Bertram S.; Herrler G.; Becker S.; Pöhlmann S.; Hofmann-Winkler H. Analysis of Ebola Virus Entry Into Macrophages. J Infect Dis. 2015 Oct 1;212 Suppl 2:S247-57. doi: 10.1093/infdis/jiv140.

Eckert N.; Wrensch F.; Gärtner S.; Palanisamy N.; Goedecke U.; Jäger N., Pöhlmann S.; Winkler M. Influenza A virus encoding secreted Gaussia luciferase as useful tool to analyze viral replication and its inhibition by antiviral compounds and cellular proteins. PLoS One. 2014 May 19;9(5):e97695. doi: 10.1371/journal.pone.0097695. eCollection 2014.
 
Gierer, S.; Bertram, S.; Kaup, F.; Wrensch, F.; Heurich, A.; Krämer-Kühl, A.; Welsch, K.; Winkler, M.; Meyer, B.; Drosten, C.; Dittmer, U.; Hahn, T. von; Simmons, G.; Hofmann, H.; Pöhlmann, S. The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol. 2013 May;87(10):5502-11. doi: 10.1128/JVI.00128-13.
 
Gnirß K.; Zmora P.; Blazejewska P.; Winkler M.; Lins A.; Nehlmeier I.; Gärtner S.; Moldenhauer AS.; Hofmann-Winkler H.; Wolff T.; Schindler M.; Pöhlmann S. Tetherin Sensitivity of Influenza A Viruses Is Strain Specific: Role of Hemagglutinin and Neuraminidase. J Virol. 2015 Sep;89(18):9178-88. doi: 10.1128/JVI.00615-15.
 
Hofmann-Winkler H.; Gnirß K.; Wrensch F.; Pöhlmann S. Comparative Analysis of Host Cell Entry of Ebola Virus From Sierra Leone, 2014, and Zaire, 1976. J Infect Dis. 2015 Oct 1;212 Suppl 2:S172-80. doi: 10.1093/infdis/jiv101.
 
Hoffmann M.; González Hernández M.; Berger E.; Marzi A.; Pöhlmann S. The Glycoproteins of All Filovirus Species Use the Same Host Factors for Entry into Bat and Human Cells but Entry Efficiency Is Species Dependent. PLoS One. 2016 Feb 22;11(2):e0149651. doi: 10.1371/journal.pone.0149651. eCollection 2016.
 
Plegge T.; Hofmann-Winkler H.; Spiegel M.; Pöhlmann S. Evidence that Processing of the Severe Fever with Thrombocytopenia Syndrome Virus Gn/Gc Polyprotein Is Critical for Viral Infectivity and Requires an Internal Gc Signal Peptide. PLoS One. 2016 Nov 17;11(11):e0166013. doi: 10.1371/journal.pone.0166013. eCollection 2016.
 
Simmons, G.; Zmora, P.; Gierer, S.; Heurich, A.; Pöhlmann, S. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Res. 2013 Dec;100(3):605-14. doi: 10.1016/j.antiviral.2013.09.028.
 
Spiegel M.; Plegge T.; Pöhlmann S. The Role of Phlebovirus Glycoproteins in Viral Entry, Assembly and Release. Viruses. 2016 Jul 21;8(7). pii: E202. doi: 10.3390/v8070202.
 
Winkler M.; Gärtner S.; Wrensch F.; Krawczak M.; Sauermann U.; Pöhlmann S. Rhesus macaque IFITM3 gene polymorphisms and SIV infection. PLoS One. 2017 Mar 3;12(3):e0172847. doi: 10.1371/journal.pone.0172847. eCollection 2017.
 
Wrensch, F.; Winkler, M.; Pöhlmann, S. IFITM proteins inhibit entry driven by the MERS-coronavirus spike protein: evidence for cholesterol-independent mechanisms. Viruses. 2014 Sep 26;6(9):3683-98. doi: 10.3390/v6093683.
 
Wrensch F.; Karsten CB.; Gnirß K.; Hoffmann M.; Lu K.; Takada A.; Winkler M.; Simmons G.; Pöhlmann S. Interferon-Induced Transmembrane Protein-Mediated Inhibition of Host Cell Entry of Ebolaviruses. J Infect Dis. 2015 Oct 1;212 Suppl 2:S210-8. doi: 10.1093/infdis/jiv255. Epub 2015 Jun 1.
 
Wrensch F., Hoffmann M, Gärtner S, Nehlmeier I, Winkler M, Pöhlmann S Virion Background and Efficiency of Virion Incorporation Determine Susceptibility of Simian Immunodeficiency Virus Env-Driven Viral Entry to Inhibition by IFITM Proteins. J Virol. 2017 Jan 3;91(2). pii: e01488-16. doi: 10.1128/JVI.01488-16. 

Zmora P., Pöhlmann S. Microscopy as a useful tool to study the proteolytic activation of influenza viruses. 2014. Microscopy: advances in scientific research and education.

Zmora, P.; Blazejewska, P.; Moldenhauer, A.-S; Welsch, K.; Nehlmeier, I.; Wu, Q.; Schneider, H.; Pöhlmann, S.; Bertram, S. DESC1 and MSPL activate influenza A viruses and emerging coronaviruses for host cell entry. J Virol. 2014 Oct;88(20):12087-97. doi: 10.1128/JVI.01427-14.

Zmora P.; Pöhlmann S. New approaches to influenza therapy. 2015. The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs (Formatex Research Center, Spain).

Zmora P.; Molau-Blazejewska P.; Bertram S.; Walendy-Gnirß K.; Nehlmeier I.; Hartleib A.; Moldenhauer AS.; Konzok S.; Dehmel S.; Sewald K.; Brinkmann C.; Curths C.; Knauf S.; Gruber J.; Mätz-Rensing K.; Dahlmann F.; Braun A.; Pöhlmann S. Non-human primate orthologues of TMPRSS2 cleave and activate the influenza virus hemagglutinin. PLoS One. 2017 May 11;12(5):e0176597. doi: 10.1371/journal.pone.0176597. eCollection 2017.

 

Marburg 

Freitag TC.; Maisner A. Early Activation of Primary Brain Microvascular Endothelial Cells by Nipah Virus Glycoprotein-Containing Particles. J Virol. 2015 Dec 16;90(5):2706-9. doi: 10.1128/JVI.02825-15.

Gerlach T.; Hensen L.; Matrosovich T.; Bergmann J.; Winkler M.; Peteranderl C.; Klenk HD.; Weber F.; Herold S.; Pöhlmann S.; Matrosovich M. pH Optimum of Hemagglutinin-Mediated Membrane Fusion Determines Sensitivity of Influenza A Viruses to the Interferon-Induced Antiviral State and IFITMs. J Virol. 2017 May 12;91(11). pii: e00246-17. doi: 10.1128/JVI.00246-17.

Koehler A.; Kolesnikova L.; Welzel U.; Schudt G.; Herwig A.; Becker S.  A Single Amino Acid Change in the Marburg Virus Matrix Protein VP40 Provides a Replicative Advantage in a Species-Specific Manner. J Virol. 2015 Nov 18;90(3):1444-54. doi: 10.1128/JVI.02670-15.

Schudt G.; Kolesnikova L.; Dolnik O.; Sodeik B.; Becker S. Live-cell imaging of Marburg virus-infected cells uncovers actin-dependent transport of nucleocapsids over long distances. Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14402-7. doi: 10.1073/pnas.1307681110.

Siegfried A.; Berchtold S.; Manncke B.; Deuschle E.; Reber J.; Ott T.; Weber M.; Kalinke U.; Hofer MJ.; Hatesuer B.; Schughart K.; Gailus-Durner V.; Fuchs H.; Hrabe de Angelis M.; Weber F.; Hornef MW.; Autenrieth IB.; Bohn E.; IFIT2 is an effector protein of type I IFN-mediated amplification of lipopolysaccharide (LPS)-induced TNF-alpha secretion and LPS-induced endotoxin shock. J Immunol. 2013 Oct 1;191(7):3913-21. doi: 10.4049/jimmunol.1203305.

Weber M.; Gawanbacht A.; Habjan M.; Rang A.; Borner C.; Schmidt AM.; Veitinger S.; Jacob R.; Devignot S.; Kochs G.; García-Sastre A.; Weber F. Incoming RNA virus nucleocapsids containing a 5'-triphosphorylated genome activate RIG-I and antiviral signaling. Cell Host Microbe. 2013 Mar 13;13(3):336-46. doi: 10.1016/j.chom.2013.01.012.

Weber M.; Sediri H.; Felgenhauer U.; Binzen I.; Banfer S.; Jacob R.; Brunotte L.; Garcia-Sastre A.; Schmid-Burgk JL.; Schmidt T.; Hornung V.;  Kochs G.;  Schwemmle M.;  Klenk HD.; Weber F. Influenza virus adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-I. Cell Host Microbe. 2015 Mar 11;17(3):309-19. doi: 10.1016/j.chom.2015.01.005.

Weber M.; Weber F. Monitoring activation of the antiviral pattern recognition receptors RIG-I and PKR by limited protease digestion and native PAGE. J Vis Exp. 2014 Jul 29;(89):e51415. doi: 10.3791/51415.

Weber M.; Weber F. Segmented negative-strand RNA viruses and RIG-I: divide (your genome) and rule. Curr Opin Microbiol. 2014 Aug;20:96-102. doi: 10.1016/j.mib.2014.05.002.

Weber M.; Weber F. RIG-I-like receptors and negative-strand RNA viruses: RLRly bird catches some worms. Cytokine Growth Factor Rev. 2014 Oct;25(5):621-8. doi: 10.1016/j.cytogfr.2014.05.004.

Zielecki F.; Weber M.; Eickmann M.; Spiegelberg L.; Zaki AM.; Matrosovich M.; Becker S.; Weber F. Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus. J Virol. 2013 May;87(9):5300-4. doi: 10.1128/JVI.03496-12.